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Profile control
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Introduction

• Plasma held place by TF+PF coils, magnetic equilibrium
described by Grad-Shafranov equation. To determine equilibrium
we need to know the internal profiles p′(ψ), T (ψ) = RBφ.

• But what determines this internal pressure and poloidal current
distribution?

• We will discuss internal evolution (=transport) of current, particles
and energy.

• 1D problem: transport ‖ B is∞-fast, only transport ⊥ B evolves
slowly. (Q:How slowly?)

• Plasma profiles: important for stability and performance.
• We will (roughly) derive 1D transport equations for j, T , n.

• What are the actuators? How do they affect profile evolution?
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Section 2

Tokamak profile dynamics
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Tokamak profile dynamics Magnetic field diffusion

Subsection 1

Magnetic field diffusion
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B field diffusion in resistive medium

• Ohm’s law for resistive MHD:

E + v× B = ηj (1)

assume v = 0, η = cst and use ∇× B = µ0j

E =
η

µ0
(∇× B) (2)

Take ∇× both sides and use ∇× E = −∂B
∂t

∂B
∂t

= − η

µ0
∇× (∇× B) =

η

µ0
∇2B (3)
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Typical time scales

∂B
∂t

=
η

µ0
∇2B (4)

• Superconducting case: η = 0→ ∂B
∂t = 0 (Field frozen in medium)

• Conducting case, typical time scales depend on resistivity and
system size τ = µ0L2

η
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Time scales w.r.t. shot time

• On what time scale does the plasma B field transport evolve with
respect to the shot time?

• Exercise:
• Calculate typical magnetic diffusion times for TCV, JET and ITER

and compare to typical plasma shot times. Recall τ = µ0L2

η and use

η ≈ 1.8× 10−2T−3/2
e [eV]

• TCV: L = 0.25m, Te = 1keV, tshot = 2s
• JET: L = 1m, Te = 3keV, tshot = 12s
• ITER: L = 2m, Te = 5keV, tshot = 300s

Answer:
• TCV: 0.14s
• JET: 11.4s
• ITER: 100s

NB: Slow internal dissipation of B field can not be ignored.
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Diffusion of poloidal flux in tokamak

• Sketch of derivation. Full derivations in [1], [2], [3]

• Write Ohm’s law (without flows) with conductivity σ = 1/η

j︸︷︷︸
total current

= σE︸︷︷︸
inductive/Ohmic current

+ jni︸︷︷︸
non-inductive current

(5)

• Project in direction ‖ B and average over a flux surface (from
Grad-Shafranov equilibrium)

〈j ·B〉
B0

=
σ‖〈E ·B〉

B0
+
〈jni ·B〉

B0
(6)
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Diffusion of poloidal flux in tokamak

�

z

magnetic axis

Bp
B�

r 

d`

field line

flux surfaces

• ψ(R,Z ) =
∫

B ·dAZ , loci of constant ψ define flux surfaces.

• Define toroidal flux through a flux surface:

Φ =

∫
B ·dAφ =

∫
BφdAφ, (7)

associate radial metric ρ =
√

Φ and ρN = ρ/ρb (b = boundary )
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Diffusion of poloidal flux in tokamak
Exercise:

• Show that in the case of circular cross section, large aspect ratio
(R/a→∞) and low plasma current (Bφ ≈ B0) it holds that
ρN = r/a, where r is the geometric radius and a is the radius of
the LCFS.

Solution:

• Bφ = B0, circular cross section, then Φ = πr2B0 and ρ = r
√
πB0,

ρedge = a
√
πB0 so ρN = r/a
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Flux Diffusion: Sketch of derivation

• Using vector calculus, differential calculus, plus Maxwell’s
equations, we can write the equation as a function of ρ:

〈j ·B〉
B0︸ ︷︷ ︸

∼ 1
ρ
∂
∂ρ
ρ
∂ψ(ρ,t)
∂ρ

=
σ‖〈E ·B〉

B0︸ ︷︷ ︸
∼σ‖

∂ψ(ρ,t)
∂t

+
〈jni ·B〉

B0︸ ︷︷ ︸
jni (ρ)

(8)
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Flux surface averaging
Volume:

V =

∫
dV =

∫
Rdφ

dψ
|∇ψ|d`p =

∫ (∮
d`p
Bp

)
dψ (9)

∂V
∂ψ

=

∮
d`p
Bp

(10)

Flux Surface average of Q:

〈Q〉 ≡ ∂

∂V

∫
QdV =

∂ψ

∂V
∂

∂ψ

∮
Q

Rd`
|∇ψ|dψdφ

=

∮
Q

d`p
Bp

/

∮
d`p
Bp

(11)
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Flux Diffusion: Sketch of derivation

σ||
∂ψ

∂t
=

F2

(2π)4µ0B2
0ρ

∂

∂ρ

(
g2g3

ρ

∂ψ

∂ρ

)
− V ′

2πρ
jni (12)

Where:

• g2 =
〈
|∇V |2

R2

〉
, g3 =

〈
1/R2

〉
, V ′ = dV/dρ. (Geometric profiles)

• F = RBφ = R0B0 + small correction due to poloidal currents.

• σ‖ is the conductivity (roughly ∼ T 3/2
e )

• jni is non-inductive current drive (self-generated, or from auxiliary
sources)
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Flux Diffusion: Sketch of derivation

σ||
∂ψ

∂t
=

F2

(2π)4µ0B2
0ρ

∂

∂ρ

(
g2g3

ρ

∂ψ

∂ρ

)
− V ′

2πρ
jni (13)

Recall: (Ohmic j) = (Total j) - (non-inductive j)
Special cases:

• jni = 0: "Ohmic" plasma: all current sustained by inductive part
(LHS). Requires dψ

dt > 0 ∀ t .

• dψ
dt = constant: stationary state. ∂

∂ρ
∂ψ
∂t = ∂

∂t
∂ψ
∂ρ = 0. Fixed plasma

current profile (shape) but not steady-state.

• dψ
dt = 0: fully steady-state plasma. Plasma current sustained
entirely by jni desired for reactor
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Non-inductive current drive
Sources of non-inductive current drive: jni = jbs + jaux

• Bootstrap current: self-generated plasma current due to trapped
particle orbits. ∼ ∇p. Equations in [4], [5]

• Auxiliary current: driven by auxiliary systems: NBI, EC, LH, IC→
NBCD, ECCD, LHCD, ICCD.

In a reactor, one must maximize the bootstrap current fraction (∼ 70%)
since auxiliary current drive has large a capital cost and lowers Qfus.
Most plasma current becomes self-generated.
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Boundary conditions for poloidal flux
Boundary conditions:

• Impose total plasma current[
G2

µ0

∂ψ

∂ρ

]
ρ=ρe

= Ip(t). (14)

• But, physically, ψ(ρb) is imposed by 2D equilibrium...

Interpretation:

• To have nonzero Ip we need
[

G2
µ0

∂ψ
∂ρ

]
ρ=ρe

6= 0, but ψ(ρ) evolution is

governed by diffusion equation that evolves to ∂ψ
∂ρ = 0. How do we

maintain Ip?
• Two possibilities

• Time-varying ψ(ρb) (induced current)
• Use source term (non-inductive current)
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Other measures of current distribution

• In practice, physicists like to work with q profile since it is
indicative of MHD stability.

q(ψ) =
1

2π

∮
1
R

Bφ
Bp

d` =
T (ψ)

2π

∮
d`

R2Bp
(15)

It can also be shown that q ≡ ∂Φ
∂ψ .

• Plasma stability, performance, transport is influenced by q and its
spatial derivative the magnetic shear s = ρ

q
∂q
∂ρ .
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Question: response to step in auxiliary current drive

σ||
∂ψ

∂t
=

F2

(2π)4µ0B2
0ρ

∂

∂ρ

(
g2g3

ρ

∂ψ

∂ρ

)
− V ′

2πρ
jni (16)

• Question:
• Suppose we are in a stationary state with ∂ψ

∂t = c.
• Qualitatively, what happens if we instantaneously increase jni?
• Does the current density profile change instantaneously?
• Which physical law does this example represent?

• Answer:
• We can not change the 1st term on the LHS since its time evolution

is governed by (16) itself! Thus, instantaneously, only the ohmic
current density ∼ ∂ψ

∂t changes.
• This is an example of Lenz’s law:

an inductive circuit resists a change
in flux. Also called “back-EMF”.
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Subsection 2

Kinetic transport
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Thermal energy transport equation

• Diffusive transport law for energy density W = kBTene

∂W
∂t

+
1
ρ

∂

∂ρ
Γ = Sources (17)

with diffusive flux Γ = ρD ∂W
∂ρ with diffusion coefficient D.

• In toroidal geometry, this is more complicated. For each species:

3
2

(V ′)−5/3
(
∂

∂t

[
(V ′)5/3nαTα

])
+

1
V ′

∂

∂ρ

(
qα +

5
2

TαΓα

)
= Pα

(18)

• V ′ = ∂V
∂ρ (geometry)

• Similarly for particle transport

• For each species (e−, i+, impurities)!
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Transport coefficients

• Diffusive/advective fluxes in plasma depend in a complicated way
on the plasma itself, nonlinear multi-scale turbulence.

• For modeling/control purposes, must resort to simple models.
• Recent breakthrough: Neural Network emulation of Gyrokinetic

fluxes from the QuaLiKiz quasilinear gyrokinetic code [6], [7].
Speedup from 1hour to 1ms per time step.

Figure: Gyrokinetic simulations of tokamak turbulence. Source: GYRO/PPPL
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Models for diffusive and convective flux

• Transport equation, for species α:

3
2

(V ′)−5/3
(
∂

∂t

[
(V ′)5/3nαTα

])
+

1
V ′

∂

∂ρ

(
qα +

5
2

TαΓα

)
= Pα

(19)
where qα is the diffusive flux and Γα is the convective flux.

qα
nαTα

= −V ′G1〈(∇ψ)2〉
∑

β∈all species

(
χT
αβ

1
Tβ

∂Tβ
∂ρ

+ χn
αβ

1
nβ

∂nβ
∂ρ

)
(20)

Γα
nα

= −V ′G1〈(∇ψ)2〉
∑

β∈all species

(
DT
αβ

1
Tβ

∂Tβ
∂ρ

+ Dn
αβ

1
nβ

∂nβ
∂ρ

)
(21)
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Qualitative picture of transport coefficients

• Accurate and simple models for thermal transport do not exist
(yet). We can only make some qualitative statements.

• Usually diagonal terms are dominant, e.g. χee for electrons.

• Usually diffusive terms are assumed dominant. Dαβ = 0

• Then Te diffusion equation becomes, e.g.

3
2

(V ′)−5/3
(
∂

∂t

[
(V ′)5/3neTe

])
=

1
V ′

∂

∂ρ

(
V ′G1χeene

∂Te

∂ρ

)
+ Pe

(22)
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Qualitative picture of transport coefficients

• Higher plasma current gives more confinement.

• Transport is ’stiff’. Above a critical ∇Te
Te

, χe increases drastically.

Increasing ∇Te
Te

above this threshold requires much more power
(limited by actuators).

• High magnetic shear and low q are ‘good’ (low transport).
Volume-averaged 〈s/q〉 [8]

• Shear close to 0 or negative is also good, can give ’internal
transport barriers’ (ITBs). e.g. [9], [10]
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Sources and sinks for thermal energy

• Sources
• Ohmic heating power (resistivity) ∼ 〈j ·E〉
• Local heat deposition by auxiliary systems
• Collisional energy exchange with other species (α particles!)

• Sinks
• Radiation losses (line radiation, cyclotron radiation,

Bremsstrahlung)
• Conduction (loss to the wall)
• Collisional energy exchange with other species.
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Subsection 3

Coupling to 2D equilibrium
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Coupling to 2D equilibrium
In reality, 1D transport is tightly coupled to 2D equilibrium
(Grad-Shafranov). Geometric factors g2, g3 come from 2D ψ(R,Z )
distribution

• Given a pressure and current distribution, GS equation determines
2D equilibrium. Very fast (Alfven = µs) timescales

• Given a 2D equilibrium geometry, 1D transport equations evolve
distribution of current and pressure. Confinement time scales vs
current redistribution time scales. ITER: τE ∼ 5s, τcrt ∼ 100s.

In practice: very complicated, strongly nonlinear coupling between two
sets of equations. Few good simulators exist.
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Profile control
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Subsection 1

Actuators
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Actuators

• Poloidal flux (current distribution)
• Ip (boundary)
• σ‖ or jBS (heating changes resistivity or BS current)
• jaux (direct source).
• Shape changes.

• Thermal transport:
• Heating (direct source)
• Change of transport via changing turbulence q, s,∇Te,∇ne, . . ..

• Particle transport
• Gas (edge)
• Neutral beam (internal source)
• Change particle transport.
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Subsection 2

Sensors
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Sensors (diagnostics) for profile control

• Kinetic profiles: ECE, Thomson, interferometry, ...

• Magnetic profiles: MSE, Polarimetry, ...

• 2D equilibrium: RT equilibrium reconstruction, ...

• Different sampling rates, varying radial location of measurements,
technically challenging diagnostics.

• How to merge information from various sources? State observers
(Previous lecture)
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Subsection 3

Control
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Control Objectives

• Obtain plasma with desired profile shapes (“scenario”), possibly in
stationary condition, at end of current ramp-up.

1 inductive

~zero shear (hybrid)

weak reverse shear

strong reverse shear

2

3

1

q

ρ

j

• Q: why is the inductive current profile peaked?

• A: σneo ∼ T 3/2
e
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Control strategies

• Open-loop vs closed-loop control
• Open-loop: design actuator time trajectories to get desired plasma

state. (everyday practice for tokamak operators who program
plasma discharges)

• Closed-loop: attempt to track a reference: reject disturbances,
robust against model uncertainties, etc (done very rarely - desired
in the future)

• Both can benefit from model-based design tools
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Model-based open-loop trajectory design

• Solve open-loop trajectory optimization problem.

• Include cost function (what you want) and constraints (what is
possible)

• Simulation examples in literature: [11] [12], [13], to be tested in
practice.
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Examples of closed-loop profile control

• Non model-based
• Control q0 and qmin in DIII-D ramp-up using NBI [14]
• Plasma regime control by LH power in Tore Supra [Imbeaux EPS

2009]

• Model-based: system identification of linear model arond
operating point

• Linear optimal feedback control around set point (JET, DIII-D) [15],
[16].

• Model-based: first principle models
• Model-based controllers tested on DIII-D [17], [18], [?]
• Lyapunov-based controller design [19]
• Adaptive model based on linearization [20]
• Model Predictive Control [21], [22]
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