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Profile control

Section 1

Profile control
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Profile control

Introduction

¢ Plasma held place by TF+PF coils, magnetic equilibrium
described by Grad-Shafranov equation. To determine equilibrium
we need to know the internal profiles p'(v), T(v) = RB,.

o But what determines this internal pressure and poloidal current
distribution?
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Profile control

Introduction

¢ Plasma held place by TF+PF coils, magnetic equilibrium
described by Grad-Shafranov equation. To determine equilibrium
we need to know the internal profiles p'(v), T(v) = RB,.
o But what determines this internal pressure and poloidal current
distribution?
o We will discuss internal evolution (=transport) of current, particles
and energy.
e 1D problem: transport || B is co-fast, only transport L B evolves
slowly. (Q:How slowly?)
e Plasma profiles: important for stability and performance.
e We will (roughly) derive 1D transport equations for j, T, n.

¢ What are the actuators? How do they affect profile evolution?
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Tokamak profile dynamics

Section 2

Tokamak profile dynamics
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Tokamak profile dynamics Magnetic field diffusion

Subsection 1

Magnetic field diffusion

F. Felici (SPC-EPFL) Plasma profiles and their control PHYS-734, February 2023 6/41



Tokamak profile dynamics Magnetic field diffusion

B field diffusion in resistive medium
e Ohm'’s law for resistive MHD:
E+vxB=nrj (1)

assume v =0, n = cst and use V x B = pj

E=""(VxB) 2)
H0
Take Vx both sides and use V x E = —%8
0B n 1 o2
— =—-——V x(VxB)=—V°B 3
ot Ho ( ) 1o ®)
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Tokamak profile dynamics Magnetic field diffusion

Typical time scales
5 = Mov B (4)

e Superconducting case: n =0 — % = 0 (Field frozen in medium)
e Conducting case, typical time scales depend on resistivity and
. 2
system size T = %
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Tokamak profile dynamics Magnetic field diffusion

Time scales w.r.t. shot time

e On what time scale does the plasma B field transport evolve with
respect to the shot time?
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Tokamak profile dynamics Magnetic field diffusion

Time scales w.r.t. shot time

e On what time scale does the plasma B field transport evolve with
respect to the shot time?
e Exercise:

o Calculate typical magnetic diffusion times for TCV, JET and ITER
and compare to typical plasma shot times. Recall 7 = “';I—LZ and use
n~1.8x1072T, ?[eV]

e TCV: L =0.25m, Te = 1keV, tsnot = 28

o JET: L =1m, Te = 3keV, tehor = 125
e ITER: L =2m, T, = 5keV, tspor = 300s
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Tokamak profile dynamics Magnetic field diffusion

Time scales w.r.t. shot time

e On what time scale does the plasma B field transport evolve with
respect to the shot time?
e Exercise:

o Calculate typical magnetic diffusion times for TCV, JET and ITER
and compare to typical plasma shot times. Recall 7 = “‘;}—LZ and use
n~1.8x1072T, ?[eV]

e TCV: L =0.25m, Te = 1keV, tsnot = 28

o JET: L =1m, Te = 3keV, tehor = 125
e ITER: L =2m, T, = 5keV, tspor = 300s

Answer:

e TCV:0.14s
e JET: 11.4s
e ITER: 100s

NB: Slow internal dissipation of B field can not be ignored.
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Tokamak profile dynamics Magnetic field diffusion

Diffusion of poloidal flux in tokamak

o Sketch of derivation. Full derivations in [1], [2], [3]
e Write Ohm’s law (without flows) with conductivity o = 1/n

j = oE =+ Jni
total current  inductive/Ohmic current  non-inductive curren'z )
5
e Project in direction || B and average over a flux surface (from
Grad-Shafranov equilibrium)
i E-B i

B, B, B,
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Tokamak profile dynamics Magnetic field diffusion

Diffusion of poloidal flux in tokamak

magnetic axis

X flux surfaces

* Y(R,Z) = [ B-dAz, loci of constant ¢ define flux surfaces.
o Define toroidal flux through a flux surface:

¢ = /B-dA¢=/B¢dA¢,, (7)

associate radial metric p = Vo and PN = p/Pb (b = boundary)
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Tokamak profile dynamics Magnetic field diffusion

Diffusion of poloidal flux in tokamak

Exercise:

e Show that in the case of circular cross section, large aspect ratio
(R/a — oo) and low plasma current (B, ~ Bp) it holds that
pN = r/a, where r is the geometric radius and a is the radius of
the LCFS.
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Tokamak profile dynamics Magnetic field diffusion

Diffusion of poloidal flux in tokamak

Exercise:
e Show that in the case of circular cross section, large aspect ratio
(R/a — oo) and low plasma current (B, ~ Bp) it holds that
pn = r/a, where r is the geometric radius and a is the radius of
the LCFS.
Solution:
e B, = By, circular cross section, then ® = wr?By and p = ry/7 By,
Pedge = @V By 80 py = r/a
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Tokamak profile dynamics Magnetic field diffusion

Flux Diffusion: Sketch of derivation

e Using vector calculus, differential calculus, plus Maxwell’s
equations, we can write the equation as a function of p:

QB _o)(E-B)  (n:B)

8
By By By ®)
~—— —_———— ——
AY(p,t 9Y(p,t i
~L ol oy 2 nle)
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Tokamak profile dynamics Magnetic field diffusion

Flux surface averaging

Volume:
v= [av= [rogran= [ (f52)w

dfp
aw B,

Flux Surface average of Q:

Rd/¢
ov | @av="50 avaw Qg @vae

]{Qdep %dzp 1)
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Tokamak profile dynamics Magnetic field diffusion

Flux Diffusion: Sketch of derivation

31,/) F2 0 g203 (91,/)) 74
kg < Ghdh N Ay 12
ot = (2r)*uoBRp dp < p op)  2mph 12)
Where:
o g = <‘VR‘Q2>, g3 = (1/R?), V' = dV/dp. (Geometric profiles)

e F = RBy = RyoBy + small correction due to poloidal currents.
e o) is the conductivity (roughly ~ T;”/Q)

e jni is non-inductive current drive (self-generated, or from auxiliary
sources)
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Tokamak profile dynamics Magnetic field diffusion

Flux Diffusion: Sketch of derivation

s F* £<92933_¢)_ v (13)
ot — (2m)*uoB2pdp \ p 9p) 2mp™"

Recall: (Ohmic j) = (Total j) - (non-inductive j)
Special cases:
e jpi = 0: "Ohmic" plasma: all current sustained by inductive part
(LHS). Requires %% > 0V t.
o 9¢ = constant: stationary state. £-5% = 5% = 0. Fixed plasma
current profile (shape) but not steady-state.
o % = 0: fully steady-state plasma. Plasma current sustained
entirely by j,; desired for reactor
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Tokamak profile dynamics Magnetic field diffusion

Non-inductive current drive

Sources of non-inductive current drive: jni = jps + faux
o Bootstrap current: self-generated plasma current due to trapped
particle orbits. ~ Vp. Equations in [4], [5]
e Auxiliary current: driven by auxiliary systems: NBI, EC, LH, IC —
NBCD, ECCD, LHCD, ICCD.

In a reactor, one must maximize the bootstrap current fraction (~ 70%)
since auxiliary current drive has large a capital cost and lowers Qys.
Most plasma current becomes self-generated.
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Tokamak profile dynamics Magnetic field diffusion

Boundary conditions for poloidal flux

Boundary conditions:
¢ Impose total plasma current

F

e But, physically, ¥(pp) is imposed by 2D equilibrium...
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Tokamak profile dynamics Magnetic field diffusion

Boundary conditions for poloidal flux
Boundary conditions:
e Impose total plasma current

F

e But, physically, ¥(pp) is imposed by 2D equilibrium...
Interpretation:

o To have nonzero /, we need [%%] # 0, but ¢(p) evolution is
pP=pe

governed by diffusion equation that evolves to % = 0. How do we
maintain /,?
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Tokamak profile dynamics Magnetic field diffusion

Boundary conditions for poloidal flux

Boundary conditions:
¢ Impose total plasma current

F

e But, physically, ¥(pp) is imposed by 2D equilibrium...
Interpretation:

o To have nonzero /, we need [%g-ﬂ # 0, but ¢(p) evolution is
pP=pe

governed by diffusion equation that evolves to % = 0. How do we
maintain /,?
e Two possibilities

e Time-varying ¥ (pp) (induced current)
e Use source term (non-inductive current)
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Tokamak profile dynamics Magnetic field diffusion

Other measures of current distribution

e In practice, physicists like to work with g profile since it is
indicative of MHD stability.
1 1By ., T(¥) drl
W) =2: 7”8, % = 2r | Re5, 18)

It can also be shown that g = %.

o Plasma stability, performance, transport is influenced by g and its

spatial derivative the magnetic shear s = gg—z.
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Tokamak profile dynamics Magnetic field diffusion

Question: response to step in auxiliary current drive

oY Fz2 9 <gzgsﬁ_¢> Vv

== = Sy 16
Wot = @r)*ueBpdp \_ p 0p o (16)

e Question:

Suppose we are in a stationary state with % =c.
Qualitatively, what happens if we instantaneously increase j,;?
Does the current density profile change instantaneously?
Which physical law does this example represent?
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Tokamak profile dynamics Magnetic field diffusion

Question: response to step in auxiliary current drive

0y Fz2 9 <gzg36¢) Vv
2

W _ 9 RS 16
T (2m)*uoBspdp \ p Op ijm (16)

e Question:

e Suppose we are in a stationary state with % =c.

e Qualitatively, what happens if we instantaneously increase jy,;?
e Does the current density profile change instantaneously?

e Which physical law does this example represent?

e Answer:

e We can not change the 1st term on the LHS since its time evolution
is governed by (16) itself! Thus, instantaneously, only the ohmic
current density ~ %—“{ changes.

e This is an example of Lenz’s law:
an inductive circuit resists a change
in flux. Also called “back-EMF”.
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Tokamak profile dynamics Kinetic transport

Subsection 2

Kinetic transport
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Tokamak profile dynamics Kinetic transport

Thermal energy transport equation

o Diffusive transport law for energy density W = kg Tene

W 10
aa_t + ;a—pl' = Sources (17)
with diffusive flux I' = pD% with diffusion coefficient D.

In toroidal geometry, this is more complicated. For each species:

3yn-5/3 (9 [(\n5/e 190 5 _
SV (G [T )+ g (et 5 Tale ) = P
(18)

V' = 9% (geometry)
Similarly for particle transport
For each species (e, it, impurities)!
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Tokamak profile dynamics Kinetic transport

Transport coefficients

¢ Diffusive/advective fluxes in plasma depend in a complicated way
on the plasma itself, nonlinear multi-scale turbulence.

¢ For modeling/control purposes, must resort to simple models.

¢ Recent breakthrough: Neural Network emulation of Gyrokinetic
fluxes from the QuaLiKiz quasilinear gyrokinetic code [6], [7].
Speedup from 1hour to 1ms per time step.

Figure: Gyrokinetic simulations of tokamak turbulence. Source: GYRO/PPPL
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Tokamak profile dynamics Kinetic transport

Models for diffusive and convective flux

e Transport equation, for species a:

S vn-53 (9 [y 190 3 _
SV (G [P )+ g (et 5 Tele ) = P
(19)

where q, is the diffusive flux and I, is the convective flux.

Qo , > r+ 1073 n, 10ng

=_V b _ 75

L vewf) Y (D5t
geall species

(20)
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Qualitative picture of transport coefficients

e Accurate and simple models for thermal transport do not exist
(yet). We can only make some qualitative statements.

¢ Usually diagonal terms are dominant, e.g. xee for electrons.
e Usually diffusive terms are assumed dominant. D,z =0
e Then T, diffusion equation becomes, e.g.

3, i sss (D [ ns3 19, Te
SOV (o [(v)PPne T = Vi | V/Gixeon 2 ) + Pe
(22)
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Tokamak profile dynamics Kinetic transport

Qualitative picture of transport coefficients

e Higher plasma current gives more confinement.

e Transport is ’stiff’. Above a critical VTe, Xe increases drastically.
Increasing -~ YTe above this threshold requires much more power
(limited by actuators)

e High magnetic shear and low g are ‘good’ (low transport).
Volume-averaged (s/q) [8]

e Shear close to 0 or negative is also good, can give ’internal
transport barriers’ (ITBs). e.g. [9], [10]
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Tokamak profile dynamics Kinetic transport

Sources and sinks for thermal energy

e Sources
e Ohmic heating power (resistivity) ~ (j- E)
o Local heat deposition by auxiliary systems
¢ Collisional energy exchange with other species (« particles!)
e Sinks
o Radiation losses (line radiation, cyclotron radiation,
Bremsstrahlung)

e Conduction (loss to the wall)
o Collisional energy exchange with other species.
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Tokamak profile dynamics Coupling to 2D equilibrium

Subsection 3

Coupling to 2D equilibrium
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Coupling to 2D equilibrium
In reality, 1D transport is tightly coupled to 2D equilibrium
(Grad-Shafranov). Geometric factors g», g3 come from 2D (R, Z)
distribution
e Given a pressure and current distribution, GS equation determines
2D equilibrium. Very fast (Alfven = us) timescales
e Given a 2D equilibrium geometry, 1D transport equations evolve
distribution of current and pressure. Confinement time scales vs
current redistribution time scales. ITER: 7 ~ 5s, 7¢t ~ 100s.

In practice: very complicated, strongly nonlinear coupling between two
sets of equations. Few good simulators exist.
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Profile control

Section 3

Profile control
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Profile control Actuators

Subsection 1

Actuators
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Profile control Actuators

Actuators

¢ Poloidal flux (current distribution)
I, (boundary)
o) or jgs (heating changes resistivity or BS current)
Jaux (direct source).
Shape changes.
e Thermal transport:
e Heating (direct source)
e Change of transport via changing turbulence q,s,V Te, Vi, .. ..
¢ Particle transport
o Gas (edge)
e Neutral beam (internal source)
e Change particle transport.
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Profile control Sensors

Subsection 2

Sensors
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Profile control Sensors

Sensors (diagnostics) for profile control

¢ Kinetic profiles: ECE, Thomson, interferometry, ...

Magnetic profiles: MSE, Polarimetry, ...

2D equilibrium: RT equilibrium reconstruction, ...

Different sampling rates, varying radial location of measurements,
technically challenging diagnostics.

How to merge information from various sources? State observers
(Previous lecture)
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Profile control Control

Subsection 3

Control
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Profile control Control

Control Objectives

¢ Obtain plasma with desired profile shapes (“scenario”), possibly in
stationary condition, at end of current ramp-up.

~zero shear (hybrid)

inductive

o 1

e Q: why is the inductive current profile peaked?
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Profile control Control

Control Objectives

¢ Obtain plasma with desired profile shapes (“scenario”), possibly in
stationary condition, at end of current ramp-up.

~zero shear (hybrid)

inductive

o 1
e Q: why is the inductive current profile peaked?

® Al opeo ~ Tg/z
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Control strategies

¢ Open-loop vs closed-loop control

e Open-loop: design actuator time trajectories to get desired plasma
state. (everyday practice for tokamak operators who program
plasma discharges)

e Closed-loop: attempt to track a reference: reject disturbances,
robust against model uncertainties, etc (done very rarely - desired
in the future)

e Both can benefit from model-based design tools
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Profile control Control

Model-based open-loop trajectory design

e Solve open-loop trajectory optimization problem.

¢ Include cost function (what you want) and constraints (what is
possible)

e Simulation examples in literature: [11][12], [13], to be tested in
practice.
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Profile control Control

Examples of closed-loop profile control

¢ Non model-based
e Control gy and qmin in DII-D ramp-up using NBI [14]
e Plasma regime control by LH power in Tore Supra [Imbeaux EPS
2009]
e Model-based: system identification of linear model arond
operating point
e Linear optimal feedback control around set point (JET, DIII-D) [15],
[16].
e Model-based: first principle models
e Model-based controllers tested on DIII-D [17], [18], [?]
e Lyapunov-based controller design [19]
e Adaptive model based on linearization [20]
e Model Predictive Control [21], [22]
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